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Abstract—A constitutive model is developed in which a sct of continuous field variables, called
dumage vectors are used to describe the anisotropic response of a brittle solid due to the growth of
cracks under general applied loads. The model s tested numerically by studying the response of
infinitely extended solids under a number of general plane strain loading conditions.

l. INTRODUCTION

The exact description of the actual evolution of the microcrack pattern in a progressively
failing brittle solid would be a diflicult task. However, this process is reflected in an
“average” sense by a degradation in the elastic stiffness (“softening™) of the body considered
due to the progressive growth and coalescence of microcracks. We may therefore quantify
the process of progressive failure in a brittle solid (for example a rock) by introducing a
continuous ticld variable called the damage, which may be regarded as a continuous measure
of the state of internal degradation of the stiffness of the material considered. In such a
description, the rock itself will also be regarded as a continuum on a suitable macroscopic
scile whose length s large compared with a typical grain radius in the rock considered.

The concept of damage was first introduced by Kachanov (1958) for the description
of creep rupture. Since that time, this concept has been used extensively to describe virious
types of failure processes in metals and other types of solids (see for example Lemaitre,
1986 for a review).

A formulation of an isotropic damage model (when the damage is a scalar quantity)
tor general three-dimensional problems is given by Dragon and Mroz (1979), and Resende
and Martin (1984). However, there is strong experimental evidence to suggest that damage
inttiation and growth are essentially anisotropic phenomena (see for example Paterson,
1978). A number of more general anisotropic damage models were therefore proposed.
Thus, Davison and Stevens (1973) regarded the damage in a brittle material as a vector
quantity whose magnitude and direction were related in an average sense to a lurge number
of cracks in the neighbourhood of the point considered. The dumage vector was taken as
an internal state variable. Finally, to complete the model, a simplitied damage accumulation
function relating the damage growth to the current stress and damage was proposed.

Krajcinovic and Fonseka (1981) in their elegant model, used a similar approach.
However, unlike the previous case, the damage growth law was not formulated dircctly.
They related the damage growth in different directions to increments in strain through a
set of dumage surfaces *F(D.¢) (x = 1,2,...,n) in deformation space, associated with the
damage vector in different directions. Their development of a damage growth model depends
on the existence of a normality rule in which a damage increment is normal to the cor-
responding damage surface. This in turn depends on the assumption of “*path independence
in the small™ (sce for example Singh, 1986). Here, the work donc in producing a small
change in damage is independcent of the path used in deformation space in passing between
the two damage states. A very closely related derivation of an analogous normality rule in
plasticity has been presented by Dougill (1975), by using the concept of path independence
in the small as an initial postulate in the mathematical theory of plasticity. The model
described in this paper for the description of damage growth, most closely resembles the
one formulated by Krajcinovic and Fonseka (1981). However, there are a number of
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important differences. both in the formulation of our model and in the problems considered.
Thus. unlike the damage growth model constructed by Krajcinovic and Fonseka (1981). our
damage growth model does not depend on any assumption concerning path independence in
the small. Motivated by the work of Griffith and Murrell. described in Jaeger and Cook
{1979). we have taken our damage surface in strain space to be parabolic rather than
hyperbolic as was the case in Krajcinovic and Fonseka's work. In the present paper. we
also formulate components of the stiffness tensor in an approximate manner directly from
micro-mechanical considerations. We apply our model to the study of a number of plane
strain problems in which an infinitely extended brittle solid undergoes progressive failure
under general biaxial loading.

2. SOME PRELIMINARY DEFINITIONS

2.1, Sign convention
Throughout this work, we adopt the convention that tensile stresses and strains are
positive and compressive stresses and strains are negative.

2.2 The damage variables

The direction of a damage vector *D (x = 1,2,....n) is defined by the unit vector 1
normal to a given set of flat, penny-shaped cracks. In a given direction 4, all growing cracks
remain penny shaped and have the same radius e, The crack radii for cracks in different
directions need not, however, be the same. We also supposce that the damage growth in a
given direction is independent of the damage growth in other directions. Also, any number
of damage vectors "D may simultancously exist at i given point tn the material considered.
The magnitude of the damage vector "2 in a particular direction 4 s defined as follows:

N .
D= . o (no summation over 21}, x=1,2,....n n

Here 2V s the total number of penny-shaped cracks all of radius *«¢ tn the direction %, all
contained within a spherical sumple volume 1 whose radius R is much larger than any
crack radius *¢. *r is the volume of i sphere of radi‘us *a.

We also define the effective damage vector, "D in a particular direction fi, due to the
damage vectors *D (x = 1,2,...,n) in other directions % by the equation

‘D = Y *Djcos M0l {2)
=1

In eqn (2), *0 is the angle between the normal 1o a selected “effective” damage plane and
the normal % to an actual damage plane. We note here that we may have an “effective™
damage in a particular direction without having an actual damuge in this direction.

2.3, Coordinate axes

0123 (with unit vectors é,, é,, ¢, directed along 01, 02, 03) denotes a fixed set of right-
handed orthogonal Cartestan axes (called the global axes) embedded in the rock we are
considering (Fig. 1}. 03" (in direction ¢) denotes the normal to a penny-shaped crack {center
0) in the solid we arc considering. The 017 axis is now defined by the intersection of the
cruck (damage) plane with the plane 102, The 027 axis is then defined so that axes 01°2°Y
with unit vectors ¢/, %, é, directed along 017, 02, 03", respectively also form a right-handed
sct of orthogonal axes. These are called the local axes.

Throughout this paper tensor components of type o,,, &, and K, .., (i, jom.n = 1,2.3)
denote the Cartesian components of the stress, strain and elastic stitffness tensor a, & and
K. respectively, referred to the gobal axes. Referred to this set of axces, the unit vector 4 also
has the components 4 = {(n,.n,. 1),
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Crack plane ,
01" incrack plane

Y03’ Lr to crack plane

Projection of 03
on plane 102

1

Fig. 1. A penny-shaped crack with coordinate systems.

2.4, The strain traction vector defined on a damage plane

In later sections of this paper. we will find it convenient to define the ith component
of the strain traction vector g¢ acting on a crack plane (damage plane) with unit normal .
by the equation

(er), =&,n, (L j=1.2.3). 3
The magnitude of g, is given by
£r = (£, 8,0,m) " . (4)
The component of g, in the direction of 4 is given by
Ly = E,mn,. (3
The component of g, in the damage pline (crack plane) is then given by
tr = (&00m,m) (S —nmn)'? (6)
where J, is the usual Kroneker delta symbol.
2.5, The effective stiffness tensor
Referred o our fixed axes, we write components of the fourth order etfective elastic
stiffness tensor, corresponding to states of damage *D as functions of 'D,2D,...,"D in the

abbreviated form
Elfm" = Kl/mn(D)' (7)

For a material in the undamaged state, we define
N=0 (x=12,....n) and K, =K;m (8)

where K, ., refer to the components of the elastic stiffness tensor of the initially undamaged
clastically isotropic, homogencous material. Grady and Kipp (1980), in their scalar damage
model, scaled the entire failure state of the material so that the damage always lies between
zero and unity. In our model, however, no advantage is gained by performing this exercise,
so that the magnitude of any damage vector can exceed unity.

3. THE CONTINUUM DAMAGE MODEL

3.1. The constitutive relations
Here, the set of damage vectors *D (x = 1,2,....n) defined in Section 2.1 is taken to
be a sct of internal variables describing the state of the material considered. It is supposed
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that the process described by this set of variables is the only source of irreversible behaviour
in the material considered. The damage in the material is defined to be irreversible in the
sense that the initial. undamaged state cannot be recovered on unloading. We also suppose
here that the unloading ts purely elastic, and that no further damage occurs during any
unloading process.

We have followed the formulation of constitutive equations based on thermodynamics
with internal variables. This has been studied extensively and in considerable detail by Rice
(1971, 1973). Kestin and Bataille (1977). Krajcinovic and Fonseka (1981) and Singh (1986).
We therefore present only the final constitutive equations. We might mention. however,
that the existence of thermodynamic potentials for deformations in which the damage
vectors *D (x = 1,2..... ny are held fixed (Rice. 19795). is perhaps the most important basic
assumption used in the work cited above. Expressed in the form of a total stress-strain
relation, our required constitutive equations may be written in the form

g, = K, (D), foragiven fixed D (x = 1,2,...,n). )

The components of the etfective elastic stiffness tensor in eqns (9) above satisfy the following
symmetries

Kumn = A’[mm = K;;nm = Kmm;' (‘0)

In eqns (9) and throughout this paper, thermal effects are neglected.

3.2, The dumage surface

Damage surfaces in the continuum dumage theories of brittle rocks are intended to
play a similar role as yield surfuces in the hardening theory of plasticity. However, following
Krajcinovic and Fonscka (1981), these surfaces are always formulated in strain space. In
particular, the equations of cach damage surface used in this paper will be written in terms
of the cffective damage (eqn (2)) and the components of the strain traction vector normal
to and in the damage plane, ey and *e,, respectively (see eqns (4) and (5)). Thus, we write
the equations for the set of all damage surfaces (all have the same functional form) in terms
of a scalar function F as follows.

FCev e D)y =0 (x=1,2,....n). (11)

Krajcinovic and Fonscka (1981) proposed a hyperbolic dumage surface for concrete
and rock. However, us mentioned in the introduction to this paper, we have sclected an
alternative form for F. Thus, motivated by the work of Mohr, Griffith and Murrell
{desceribed in Jueger and Cook, 1979) we suppose that in &, &, space each damage surfuce
for a brittle rock is a parabola whose equation may be written in the form

FCey. ep D) = FCe)~ Y(D) = 0 (12)

where
Fex2er) = ey + Al (13)
Y(D) = AXD"P + A, (14)

A 20 = 1,2,3) are material parameters which must be determined experimentally. The
damage surfaces we use (eqns (12)-(14)) have the following features:

{1) The damage surface is symmetric with respect to the sign of &, that ts the damage
can grow in shear for “negative™ as well as for “positive values™ of the in-plane components
of the strain traction vector gg.
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(i1) If e, is zero, the damage can grow only when ¢, has a positive value, that is, in the
absence of shear, cracks can grow in tension only. This is consistent with the assumption
we have made in Section 3.1 of this paper. From eqns (12) and (13). the condition for crack
{damage) growth in pure tension is

ey > AD P+ A, (15)

(it} Analogously to the behaviour of a vield surface in the theory of hardening in

plasticity. we see from eqns (13). (14) that as the effective damage *D increases, the
corresponding damage surface expands in strain space.

3.3, Damage growth initiation

In this paper. we study the process of progressive failure in a brittle rock subjected to
quasi-static applied loading rates. In a body failing under loads applied in a given direction
and applied at sufficiently low rates, it is generally accepted that only a small number of
critically oriented cracks participate in the fracture process ; see for example work of Griffith
and Murrell in Jacger and Cook (1979) and Grady and Kipp (1980). Following these ideas,
we therefore suppose that further constraints must be imposed on eqns (12)-(14) to restrict
the number of possible damage growth directions at any given load increment.

We detine our damage growth direction by requiring that the conditions for F(ey. %y)
{(in eqns (13) and (14)) to be a maximum and the inequality

F(eyer) > YCD) (16)
are simultancously satisfied. We have determined the directions of the unit normal
& = {n,,n: n,) to the damage plane for which the function F(%y, %2} in eqns (13) and (14)
takes maximum vilues by using the method of Lagrange Multipliers. These directions were
determined for a body under general triaxial loading conditions (and not just for plane
strain loading conditions). The following results were obtained.

(i) For 4 (e, ~y) € 1

max F(ley,’e,) =€, with 2= (1,0,0). (17a)
That is. 4 is parallel to the direction of the maximum applied principal strain g,

(it) For A, (¢, —&) > 1:

Here,
max FCey,"cr) = e +ey) + s (6, —&3)° + L ]
: Mg 44,

with

g=(cos & 0,sin &)y and {cos (n=&), 0. sin (n—-&)) v (17b)
where

z N | l

= teos (i) )

Here, we see that damage growth can occur in two conjugate directions.

The maximum value of F(*ey, ") is therefore independent of the intermediate applied
principal strain, £,, as is the dumage. An analogous result in stress space was obtained for
triaxially stressed brittle solids by Murrell and Digby (1970). This was to be expected. since
Murrell and Digby (1970) extended the Griffith approach for triaxially stressed brittle
solids, to derive a parabolic failure envelope in stress space.
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3.4. Conjugate and non-conjugate damage growth

In our computations (see Section 6) the damage initiation condition (16) is actually
checked numerically for damage growth in the potentially active direction by checking
whether

max FCey ') > YD) (18)

where %', 27! refer to components of the strain traction vector computed at the (r+ )th
load increment and *D” refers to the effective damage computed from eqn (2} at the
preceding rth load increment.

In case (it) (eqns (17b)). the normals for which F(’c.. *¢;) takes maximum values are
directed symmetrically about the axis of the minimum principal strain ¢,. These normals
will then define two possible planes in which the damage can first grow. Whenever the
condition (18) is sutisfied, two cases must then be considered.

{1y Non-conjugate damage growth. Here, the normal to the damage plane at the
preceding rth toad increment is not symmetric with respect to the calculated directions of
i (eqns (17b)) at the (r+ )th load increment, but makes angles ' and ‘0 with these
directions (see Fig. 2) where *0 < '8, suy. We then have at the rth load increment (from
eqn {2)),

D>'D andso YD) > Y('D) (19)
{sce cyns (14)). In this case, damage growth is permitted only in the damage plance normal

to the direction x = 2 for which Y{D) is largest. We then have the case of non-conjugate
damage growth, and we take

A'D = A'D,
since in this case A'D = 0.
(it) Conjugate damage growth. Here, the normal to the damage plane at the rth load
increment is symmetric with respect to the potential damage growth directions computed
at the (r+ 1)th loud increment. We then have '0 = 0 = /2 say, and so, from eqns (2),

D = Dicos 0] = Dicos 0| = Dicos (0;2)] = ‘D, (20)

thatis, Y('D) = Y(3D).

Fig. 2. 2 = | and 2 are normal to the potential damage planes. 0 is normal to the damage plane
at the preceding load increment.
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Here, we have conjugate damage growth along the two damage planes normal to the
directions x = | and x = 2. Since

A'D=A'D=AD #0,
AD = A°D+A'D|cos 8] = A2D(1+]|cos 8]) = A'D.
Theretore,

A*D = A’Djb @
where b = (1 +|cos 8]).

3.5. Summary of the damage growth model

We may now summarize our damage growth model as foliows. &, ; denotes the strain
tensor at (r+ 1)th load increment. At this load increment we first calculate the directions
i = (n,.n..ny) for which the function F(*e¢y" ', %7 ") (eqns (12)—(14)) is a maximum. As
explained in the preceding section, this defines one, or at most two potentially active
conjugate dumage growth directions at the (r+ 1)th load increment. From eqn (2), we now
compute the effective damage (in these calculated directions) at the preceding rth load
increment, that is we compute

D* =D+ Y "Dicos 0. (22)
H=2

For these computed, potentially active damage directions, we then caleulate Y(’b’) from
cqn (14).

We then cheek the damage initiation condition (18). If this condition is satisficd, we
then compute the new effective damage, at the {r+ D)th load increment, from eyns (12)-
(1), thatis

DU = xd where x o=l A, CE ) = A,)/ Ay (23)

We then obtain

and hence either

(l) zDrrl =xDr+AxD
for non-conjugate damage growth, or

() D' =D"+A'D/b
for conjugate dumage growth, where b = 1+ |cos 8] and 0 is the angle between conjugate
damage planes. .

The empirically constructed yield function Y(D) defined carlier by eqns (14) leads to
computations in which very sharp stress drops can be encountered. To circumvent this

ditliculty in the numerical computations, we have therefore modified our yicld function
(eqns (12)-(14)) as follows:

Fle) = €‘v+Aa€::'

Y(D) = A:DV + A,
(ex+Aei—dy)' |

RN A 3

A3

for x < \/(2/3) (24a)
D=
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Fle) = ey+ 4,67,

- I P
Y(D) = (D +1.0886621) + 4,

‘ forxz ((273) % (24b)
. v+ Al — A
Dzzﬁligﬁ;_i-wﬂ%%u

= 2x—1.0886621. )

We note that the graphs for the function D as a function of x defined by eqns (24) above
join continuously and smoothly at x = /(2/3). We note that. unlike the damage growth
model constructed by Krajcinovic and Fonseka (1981). our damage growth model does
not depend on any assumption concerning path independence in the small.

4. THE EFFECTIVE ELASTIC COMPLIANCE OF A DAMAGED BRITTLE ROCK

We now complete the formulation of our continuum damage model by describing the
approximate calculation of the effective elastic comphance of a cracked elastic solid.
The elastic response of a cracked solid may be written in the form

“:1/ = ('I/Inn(rnm (I~ j~ i = l~2~ 3) (25)

where C,,,,, denote the components of the effective compliance tensor of the cracked
{damaged) solid we are considering. As indicated in the introduction of this paper, we
derive approximate explicit expressions for the compliance components in terms of the
crack concentration based on microstructural considerations. Now, in general, the effective
clastic compliance of a cracked elastic solid should be larger than the initial compliance
ol the uncracked solid. Following Horii and Nemat-Nasser (1983), the effective elastic
compliance of u crucked solid is therefore written in the form

Calmn = Cv(/nm + f{l]ll"l (‘{' j* n.on = ], 2v 3) (2())

where € is the clastic compliance tensor for the uncracked solid (assumed clastically
isotropic and homogencous with Young's modulus £ and Poisson’s ratio v). H is the
contribution to the effective elastic compliance € due to all the cracks. Suppose now that
S denotes the contribution to H from a single cruck. Following Horit and Nemat-Nasser
{1983). we then obtain the following components of' S referred to the local axes 0172737 (sce
Section 2.2).

)
’ 4 ‘ -
St =~y —a'f,

_ 8(l—v3) (27)

Sty = S%n a'f.. and

Y T3EQR )

all other components S/, are zero.

Consistent with our assumptions in Section 2.2 regarding the independence of damage
growth in different directions, it is assumed in the derivation of these results (see Horit and
Nemat-Nasser, 1983), that the effect of crack interaction may be ignored.

Now let oy { = a,,mn,) denote the component of stress normal to the plane of a given
crack and gy, (<0) be the critical normal compressive stress at which the crack may be
considered to be closed. The functions /, and /, arc then defined as follows.
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, . . . <
fi=f=1 for oy o\, < 0.1.e. when g, is tensile and the cracks
are open.
fo=(l=0y/oy)" for0 <oy oy < 1,i.e. when gy ts compressive and the L (28)
cracks are partially closed. -
=0 foro.'cy. = l.i.e. when o, is compressive and the cracks
are completely closed. )
fo=U—=0yiay) for0 <o, o, <0.8.ie wheno,iscompressive and the

cracks are partially closed.
‘ . . . (29)
=0.2 foroy oy, = 0.8.1.e. when o is compressive and the cracks
are either almost or completely closed.

From eqns (27) we see that referred to the local axes. S5:::. 8133 and S5y,; are the only
non-zero components of the compliance tensor S, and hence a penny-shaped crack affects
the overall response only in a direction normal to the crack plane. If now there are n cracks
per unit volume oriented parallel to this crack. we then obtain from eqns (1). (27), (28)

16(1 —v°)

,I’\\nz .‘E'

D /..

. , 8(1=v’) . (30)
”Hn = ”:x:\ = 1L(2—() D./r. and

all other components 77, are zero.

Hence, turning now to the case in which damage planes exist simultancously in several
directions tn the material, we obtain from eqns (26) and (30),

('I/I”I' = Cl/"l’l + Z (T T T’I" T\‘"”;’r”!) (3 l)

prod
x|

for the components of the effective compliance tensor C referred to the global axes. In eqns
(31) T,, denote the components of the transformation tensor T from the global to the local
axes, that is

e, =T,e (32)

LY A
The summation sign in eqn (31) denotes the summation over all possible ortentations of
the axes 017273 relative to the global axes 0123 (that is an orientation average). The
corresponding components K, of the effective stiffness tensor may be calculated by taking
the inverse of the effective compliance tensor € given by eqns (26). (31).

5. PARAMETERS USED IN THE MATERIAL MODEL
The parameters used in our material model may be divided into two groups as follows.

(i) Effective clastic compliance C:
E, Young's modulus of clasticity for the intact rock ;
v, Poisson’s ratio for the intact rock ;
a .. the critical compressive stress for crack closure.
(it) Damage surface and damage growth (eqns (12)-(14)):
A,. a measurc of the damage initiation in pure shear, that s in the absence of tensile strain
for a given valuc of A5
A, controls the damage growth rate for given values of A, and A5
A critical extenston strain at which damage initiates in a rock specimen in the absence of
a shear strain ;
D,. the inttial damage, assumed isotropic.
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In this section, we describe methods by which the values of parameters used in our
material model (listed above) might be determined.

E and v may be determined by standard uniaxial or triaxial laboratory tests on intact
rock specimens (see for example Lama and Vutukuri, 1978). E and v are the Young's
modulus and Poisson’s ratio respectively for an intact rock loaded 10 the point where
damage growth (non-linear constitutive behaviour) may first be detected. Digby and Murrell
(1976) have given a general expression for the compressive stress required to close an
ellipsoidal crack (with axes a = & » ¢) in a triaxially stressed solid. For the special case of
a penny-shaped crack. their result is

nkE ¢
P — T —_ }
e 4([—1’3)([»)' 3

This is similar to Walsh’s (1965) result for a body loaded under plane strain conditions.
Substituting £ = 30 x 10” Pa, v = 0.2 (the values of £ and v for Stripa granite listed in Table
1). and (c/b) = 0.0001 (very flat crack) in eqn (33). we get oy, = —2.5x 10° Pa. We note
that the crack closure stress should change with the crack aspect ratio. However, in our
model. we suppose that g, is a constant (calculated for a very flat crack) for simplicity.

The parameter 4, may be determined from a uniaxial tension test. We might detect
the critical extension strain for which a change of slope in the load-deformation curve
occurs or the initiation of acoustic cmission from the sample just before the initiation of
failure.

To determine the parameter A, we first write

4“| = 4 ‘/ﬂf‘,‘ (34)

fromegns (12) {18) with ey = 0, D = 0. Here, ¢, is the critical shear strain at which damage
(crack) growth in pure shear initiates. It is very diflicult to obtain reliable measurements of
the shear strain (sce for example Shahidi er al., 1986). Otherwise, the critical shear strain
&y, could be determined by methods analogous to those used for the determination of the
parameter A, However, one may first obtain i lower bound for the critical shear strain ¢,
by observing that an intact brittle rock is stronger in shear than in tension. Thus we can
wrile

tr =yAy fory>1. (35)
We could then use eqns (34), (35) to estimate the parameter A,
4‘1} = !/Xsz_; (36)

by using some reasonable value for x (=4, say). We could then simulate numerically a
uniaxial compression test and check whether the calculated value of A, is a reasonable
value for the uniaxial compressive strength of the specimen. Here, we can also use the
observation from eqns (17a) and (17b) that the magnitude of A (¢, —¢;) also controls the
type of damage (crack) growth under given applied load conditions. It is the growth of an
inclined damage plane which leads to the peak load in compression.

The simplest test for determination of the purameter A, controlling the rate of damage
growth, might again be a uniaxial tension test where progressive failure is controlled by the
growth of a single dumage plane normal to the applicd load direction. We may then estimate
the damage in this test by measuring the effective clastic compliance of the test specimen,
This may be calculated from the slope of the unloading curve. The effective compliance
considered is related to the damage through eqns (30) and (31). By specializing these
equations to the case of a single damage plane we then obtain

- - ’: — i
E_ {1 N ‘S"_“,‘,,G.L}D} (37)



A continuum damage model for simulation of the progressive failure of brittle rocks 657

Table 1. Material and numerical par-
ameters obtained from the uniaxial tension

tests
Parameter Value

E 30.0x 10° Pa

v 0.2
. —0.5x 10° Pa
A, 3125

4. 1.15x 10"
A, 020x107?
D, 1.0x10-°

Modified damage growth law given by
egns (24a) and (24b)

where E is the effective Young's modulus in the applied load direction. Thus, having
determined £, E and A4, as described above. D may be calculated from eqn (37) and hence
the value of A, determined.

In the application of our model to the numerical computations to be described in the
next section, the numerical values of the material parameters used in the computations are
listed in Table 1. These were obtained from uniaxial tension and simple shear tests on
samples of a grey, medium-grained granite from the Stripa mine in central Sweden (see
Shahidi er al., 1986 for further details).

6. NUMERICAL SIMULATIONS AND RESULTS OBTAINED

In the application of our damage model to the study of progressive failure, we will
always restrict our attention to the case in which the body considered is loaded under plane
strain conditions. In this section we describe a number of idealized problems. These were
used to verify that physically satisfactory results could be obtained from our model before
it was to be implemented into a finite element computer code. Thus we describe the results
obtained from our model when we study the progressive failure process in an infinitely
extended body under different conditions of loading and initial damage. Here, since the
body is infinitely extended, we suppose that the damage in any given direction is uniformly
distributed throughout the body, and further, therefore, that localization effects need not
be considered for this group of idealized problems.

6.1. Plane struin case of the dumage material model

We consider the two-dimensional coordinate system shown in Fig. 3. The axis 03,
normal to the plane 102, always coincides with the directions of principal stress and strain.
All ficld quantities are independent of the direction 03. For the plane strain problems
considered in this work we make the usual assumptions:

il]J=€|J=t::3=0. (38)
2
2I

I
1

Oamage /crack o

plane Lr to \

plane 102 g

Fig. 3. Two-dimensional coordinate system. Plane 102 is a two-dimensional planc. Axis 01" denotes
the damage direction.
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We follow the notation used in Section 2.3, but now with the local axes renumbered for
convenience. Thus, axis 01" (Fig. 3) is taken to be normal to the damage (crack) plane and
02" lies in the damage plane.

6.2. Numerical results

The behaviour of our constitutive model for a body loaded under plane strain con-
ditions has been studied by specifying strain increments as load increments along the 01
axis and a constant stress along the 02 axis. An IBM PS 2 model 60 computer was used in
all of the computations described in this section. The numerical results are obtained from
the values of the material parameters listed in Table 1.

The curves 1. 2 and 3 in Fig. 4 illustrate the behaviour of our constitutive model for
an infinitely extended body loaded in tension along the 01 axis but with no confining stress
applied along the 02 axis, i.e. 6. = 0. The set of curves | (corresponding to a small initial
damage D, = | x 10~ *, uniformly and isotropically distributed) is very similar to those
described in Singh (1986). The set of curves 2 and 3 correspond to initial damages of
magnitudes 0.5 and 2.0. respectively, with the normal to all the initial damage planes
inclined at 70 degrees to the 01 axis in both these cases. The pre-failure slopes of curves 2
and 3 in Fig. 4(a) arc smaller than those of curve 1. Here, the initial finite damage in the
case of curves 2 and 3 has reduced the effective Young's modulus along the applied load
direction 01. The unloading-reloading curve 2 itlustrates that the effective Young's modulus
and Poisson’s ratio decreases with an increase in damage (Fig. 4(a) and (b)). During
unloading from a damaged state and reloading to the same state, the total damage does
not change (Fig. 4(d)). and in this case, the behaviour is clastic (Fig. (4(a). (b) and (¢)).
We get a shear strain, as shown in Fig. 4(c¢), in the coordinate system 102 for finite initial
damages inclined to the 01 axis. In this case, the principal stress and principal strain axes
do not coincide.
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Fig. 4. Numerical tension experiment. Curve | is for isotropic small initial damage (2, = 1 x 10 ).

Curve 2 for damage 0.5. Normal to this initial damage plane makes an angle of 70 to the axis 01,

Curve 3 for damage 2.0. Normal to this initial damage plane makes an angle of 70 to the axis 01.
Confining stress ;15 zero for all the curves.
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Since the magnitude of the initial damage for curve 1 is smaller than that for the case
of curves 2 and 3. we might have expected that the peak stress for curve 1 in Fig. 4(a) would
have been larger than that for curves 2 and 3. This discrepancy is due to the fact that there
is a non-zero shear strain in the case of curves 2 and 3, and the wayv we calculate the
potential damage growth directions from eqns (17). However, curve 3 has a lower peak-
stress than curve 2. as expected.

Numerical experiments were performed for an infinitely extended body loaded under
increasing compressive stress applied along the 01 axis. These were performed at three levels
of constant confining stresses. ¢, = 0, —5 and — 10 MPa corresponding to curves 1, 2 and
3. respectively in Figs 5-7.

Figure 5 illustrates numerical results from the plane strain compression test where the
condition for conjugate damage growth is satisfied. We have specified a small initial isotropic
damage D, to obtain conjugate damage growth during the proportional load increment.
We observe an increase in peak-load with increasing confining stresses (Fig. 5(a)). Damage
growth begins before the peak-load is reached, as shown in Fig. 5(¢c). However. the peak-
load occurs at a relatively small value of the damage and at a relatively small increase in
compliance. Some damage planes, whose normals were almost perpendicular to the applied
load axis 01 were observed. At the peak load. conjugate damage planes whose normals
were inclined at angles of 71 and 109 degrees to the 0 axis were active. As loading continues
beyond the post-peak region. the damage grows rapidly {Fig. S(¢)) and the growth of
damage planes whose normals make increasing angles to the applicd load axis 01 also
occurs. [t is important to notc how the strain 0l-strain 02 curves in Fig. S(b) illustrate
departure from lincarity in behaviour near the peak-load. The strain 02 suddenly increases
quite rapidly in the post-failure regime. This behaviour has been observed in laboratory
tests on brittle rocks (Paterson, 1978). In this case of conjugate damage growth, we could
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Fig. 5. Numerical compression experiment, with small initial isotropic damage (D, = | x 10 %), and
conjugate damage growth. Curve | is for confining pressure o, of 0 MPa: curve 2 for —5 MPa;
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not continue our numerical experiments beyond a level of strain 01 = 6 x 10 because the
specificd computer storage space for the damages and their directions was exhausted.

The condition for conjugate dumage growth 1s usuadly violated in practice, for example,
due to the presence of a finite initial damage (cracks) in a puarticular direction and a change
in load direction after the imitial damage growth. To study the response of the constitutive
model in the case of non-conjugate damage growth, we introduced a set of initial damage
planes whose normals were all inclined at an angle of 70 degrees to the applied load axis
01. Here, the magnitude of the initial damage was 0.005. The results are presented in Fig,
6. Here, all the curves show trends similar to those shown in Fig. 5 for the conjugate damage
growth case. However, the number ol damage directions is smaller than the number for the
conjugate damage growth case and the components €,y and C,; of the effective elastic
compliance are non-zero. Thus, in this case the axes of principal stress and principal strain
do not coincide, and we have non-zero shear strain (Fig. 6(¢)) in the coordinate system 102,
In the post-fuilure regime, the number of dumage directions does not increase significantly. A
single damage continues to grow in the post-failure region. It was found that with increasing
confining stress, the damage in planes whose normals are perpendicular to the applied load
dircction 01 vanishes. In other words, the initiation of crack or dumage planes parallel to
the load direction decreases with increasing conlinement. At zero confining stress (g, = 0),
the active damage planc is inclined at an angle of 12 degrees to the Ol axisand at o, = — 10
MPa, it is inclined at an angle of 15 degrees to the 01 axis.

The results for a numerical experiment in which a body is subjected to unloading and
re-loading under compression, for non-conjugate damage growth and under zero confining
stress. are shown in Fig. 7. In the post-failure regime. the effective Young's modulus
decreases (Fig. 7(a)) and the effective Poisson’s ratio increases with increasing damage. It
is important to note that in the case of the tension experiment, the effective Poisson's ratio
deereases with increasing damage (Fig. 4(b)). Unloading from a damage state and reloading
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Fig. 7. Numerical compression experiment with non-conjugate damage growth. Curve | is unload-
ing reloading for zero confining stress.

to the same state oceurs reversibly (Figs. 7(a), (b), (¢)) and at a constant damage level (Fig.
7(d)).

We now summarize the results obtained from the numerical studies of our constitutive
model for a body loaded under plane strain conditions as follows.

(1) The compressive strength (the magnitude of the peak compressive load) is about
seven times the magnitude of the tensile strength (peak tensile load) (compare the peaks of
curve | in Fig. 4(a) and curve | in Fig. 6(a)). However, a desired strength ratio to be
correlated with experimental data for example, may be obtained by adjusting the material
parameters.

(it) The peak-load in tension as well as in compression occurs at a small value of the
damage. See Figs 4(d), 5(c) and 6(d). Thus, the normal rock mechanics practice of taking
a brittle rock as a “linearly elastic solid” up to the peak-load is justified.

(iif) The effective elastic Poisson’s ratio (i.e. the ratio of strain 02 strain 0! on the
unloading-reloading part of the curve) decreases in the tension experiment (Fig. 4(b)), and
increascs in the compression experiment (Fig. 7(b)) with an increase in the damage. The
increase in the ¢ffective Poisson’s ratio under applied compressive loading may explain
dilatancy (an increase in the inelastic volume of a specimen) observed in laboratory experi-
ments on brittle rocks (Paterson, 1978).

(iv) Failure in compression (non-conjugate damage growth case) occurs by the growth
of adamage plane at a relatively small angle to the applied load direction at low confinement.
Failure in tension occurs due to the growth of a damage plane almost normal to the applied
load direction.

7. DISCUSSION

Our constitutive model for simulation of progressive failure in brittle rocks is based
on the continuum damage mechanics (CDM) approach. Its development does not depend
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on any assumption concerning path independence in the small. Discrete phenomena such
as the formation and growth of cracks in a brittle rock during the failure process have been
characterized in an “average” sense by using a continuum field variable. the so-called
“damage’ vector. This variable has been used in the formulation of the constitutive relations
to describe the development of elastically anisotropic behaviour during the progressive
failure process. The damage variable has been taken as an internal variable in the
theory of Irreversible Thermodynamics of continua, to derive the constitutive relations
(see eqn ().

Individual damage surfaces {(egns {12)—(14)) are associated with each damage vector
in strain space. There may be many damage vectors at a given point. It is supposed that
the dumage growth in a given direction is independent of the damage growth in other
directions. This assumption could of course be critical in certain cases where our model is
used in finite element simulations. We do not yet know how this difficulty could be cir-
cumvented. Nevertheless, we have found (Singh and Digby, 1988) that our constitutive
model does simulate many of the essential observed features of the progressive failure of a
number of brittle rock structures. We define the damage direction uniquely requiring that
the damage surfuce tunction. F(x) (see eqn (13)). is a maximum and a trial strain state lies
outside the damage surface (see inequality (16)). Our constitutive modet can then describe
damage growth in other directions whenever this is required, for example during non-
proportional loading and in clastically anisotropic behaviour,

The effective clastic properties of a brittle solid contaiming “open™ flat cracks when the
body is loaded under tension differ from those obtained for the same body when it is loaded
under compression (in the case of partially or completely closed cracks), since tn the latter
case, the question of crack closure must be considered. The effective Young's modulus of
clasticity in both cases is less than the initial Young's modulus for the uncracked matertal,
The effective Poisson’s ratio of a solid contiuning very fat open cracks s less than the initial
Potsson’s ratio, and the effective Potsson’s ratio ol a solid contiuning closed cracks ts greater
than the Poisson’s ratio for the uncracked body (see Jacger and Cook, 1979, p. 336). In
our tormulation of the elfective compliance of a rock containing crucks (egn (30)), we have
considered also the question of erack closure. The compressive crack closure stress, o, pliys
a vital role in the behaviour of our constitutive modet for a body loaded in compression. I
the magnitude of gy, 15 too farge, then under an applied uniaxial compressive stress, all flat
cracks will remain open, even in the post-failure region. The behaviour of the rock con-
stdered will not then be simulated correctly. We have therefore selected a small vitlue of g,
(= —0.5 MPa) applicable to a very flat crack.

From our numertcal simulations 1t will be noticed that we have not performed a series
of matertal parametric (“sensitivity™) studics for a range of materials under given loading
conditions. It cun be seen from the carlier sections of this paper that equally large or even
far greater contrasts in the constitutive behaviour of a cracked solid may be observed by
studying a given cracked solid under different applied loading conditions. A numerical
study of the post-fuilure behaviour of an infinitely extended cracked brittle solid foaded
under a number of plane strain loading conditions was therefore studied. Since the body
considered is infinitely extended, we suppose that the damage in any direction is uniformly
distributed throughout the body, and further, therefore, that localization effects need not
be considered for this group ol idealized problems. Ina companion paper (Singh and Digby,
1989) we will consider finitely extended bodies and localization effects will be considered in
detail. Here, our constitutive model will be generalized in such a manner that the damage
growth model for loculized elements differs from our original once used for those clements
which have not localized. We shall also demonstrate the application of our constitutive
model by performing a number of finite clement analyses of some brittle rock structures
which might actually be encountered in underground structures,

o
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